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Possible resolution of the Kauzmann paradox in supercooled liquids

Hajime Tanaka
Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan

~Received 1 April 2003; published 18 July 2003!

Generally, the entropy of the supercooled liquid decreases more rapidly than that of the crystal. Thus, the
former, if we extrapolate it smoothly below the glass-transition temperatureTg , becomes equal to the latter at
the so-called Kauzmann temperatureTK . Further extrapolation belowTK leads to the unphysical situation that
the entropy of disordered liquid is lower than the ordered crystal, which results in the violation of the third law
of thermodynamics. This is known as the ‘‘Kauzmann paradox’’ which has been the key problem of liquid-
glass transition for a long time. Here we propose a simple resolution of the Kauzmann paradox by answering
a fundamental question of how deeply we can supercool a liquid. We argue that the lower metastable limit
TLML , below which a liquid should crystallize before its structural relaxation, is located above the Kauzmann
temperatureTK . Thus, the entropy crisis atTK is naturally avoided by crystallization. We suggest that it is
dynamic heterogeneity that destabilizes a deeply supercooled ‘‘equilibrium’’ liquid state as well as a glassy
state against crystallization. This may have a significant implication on the stability of a glassy state, which is
of industrial importance in relation to the storage of glassy material.

DOI: 10.1103/PhysRevE.68.011505 PACS number~s!: 64.70.Pf, 61.43.Fs, 65.60.1a, 81.05.Kf
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I. INTRODUCTION

Liquid-glass transition phenomena are universally o
served in various types of liquids, including molecular li
uids, ionic liquids, metallic liquids, oxides, and chalc
genides@1–4#. A liquid is always in a metastable state belo
its melting pointTm . Thus, whether it becomes a glassy st
at Tg upon cooling or crystallizes critically depends upon t
cooling rate. If the cooling rate is sufficiently slow, any liq
uid crystallizes@5#. Thus, there is a critical cooling rat
above which a liquid can be vitrified. Provided that we c
successfully avoid crystallization, we are allowed to disc
the nature of a supercooled liquid state at very low tempe
tures, which is fundamentally quite interesting. Howev
this supercooled liquid state far below melting pointTm is
not well understood. For example, it is known that the e
tropy of the supercooled liquid decreases more rapidly t
that of the crystal and thus the former becomes equal to
latter at the so-called Kauzmann temperatureTK ~see Fig. 1!.
Further extrapolation belowTK leads to the unphysical situ
ation that the entropy of disordered liquid is lower than t
ordered crystal, which results in the violation of the third la
of thermodynamics, provided that the crystal is stable up
cooling until 0 K and thus its entropy approaches zero asT
→0 K @6#. This is known as the ‘‘Kauzmann paradox’’@7#
which has been one of the most fundamental problems
liquid-glass transition for more than 50 years@1–4,8–11#.

Kauzmann considered this important problem in de
@7,11#. He noticed that the extrapolation of liquid entrop
toward lower temperatures leads to the unphysical situa
that the entropy of the hypothetical ‘‘equilibrium’’@12# liquid
becomes less than that of the crystal, as described ab
However, Kauzmann@7# had focused on the fact that at lo
temperatures the free-energy barrier for crystal nucleat
DFc, can become much lower than that for structural rel
ation, since the former decreases with decreasingT while the
latter increases. Thus, he concluded that the characte
1063-651X/2003/68~1!/011505~8!/$20.00 68 0115
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time of nucleation and crystallizationtx should become
shorter than that of structural relaxation,ta , before reaching
TK and therefore, an extrapolation of the ‘‘equilibrium’’ liq
uid’s entropy to much lower temperatures is ‘‘operationa
meaningless.’’

This conclusion of Kauzmann was, however, challeng
by the following argument based on the modern knowled
on the supercooled liquid~see Secs. 4.1 and 4.3.1 of Re
@1#!. It is now well established@1,13# that the nucleation of a
crystal is controlled not only byDFc, but also by the kinetic
factor, namely, the characteristic time of material transp
t t . Thus, the above conclusion, derived by Kauzma
which neglects this fact, cannot be justified. As shown belo
if we adopt t t5ta , which is now widely believed to be
valid, we reach the conclusion thattx@ta @see a dotted
curve (ta branch! in Fig. 2 and later discussions#, contrary to
Kauzmann’s argument. This implies that we can continue
cool a liquid while keeping a condition that the equilibratio
time is longer thanta and avoiding crystallization. Thus, it i
now widely believed@1–4# that the Kauzmann paradox sti
remains paradox, despite that various efforts have been m
to resolve it@8–11#. Since the Kauzmann paradox is deep
related to the nature of glass transition and the origin of
slow dynamics, it has had strong influences on our und
standing of glass-transition phenomena.

There can be three types of approaches to resolve
Kauzmann paradox.

~a! The first type of approach is to introduce an ‘‘ide
glass transition’’ to avoid this paradox@1–4# @see Fig. 1~a!#.
For example, Gibbs and DiMarzio@14# first pointed out from
their consideration of uncrystallizable atactic polymers t
this paradox would vanish if a second-order phase trans
mation occurs atTK . In this scenario, atTK the equilibrium
liquid transforms in the Ehrenfest sense to an ‘‘ideal gla
of the same entropy and heat capacity as the crystal b
higher energy than that of the crystal. Adam and Gibbs@15#
extended this approach and provided a configurational
©2003 The American Physical Society05-1
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tropy theory, which connects the configurational entropy
the viscosity with a Vogel-Fulcher-like relation. This idea
further developed into a more microscopic theory based o
spin-glass picture@16–19#. However, the existence of suc
an ideal glass transition itself is still a matter of debate@1,8–
11#.

~b! The second type of approach is to reconsider the w
of extrapolation carefully@see Fig. 1~b!#. For example, Still-
inger @8# demonstrated on the basis of the inherent struc
theory that~i! an ideal glass transition cannot occur for su
stances of limited molecular weight and with usual interm
lecular interactions,~ii ! the entropy of liquid smoothly ap
proaches that of crystal towardT50 K, and ~iii ! particle
rearrangements of finite free-energy cost are always av
able at any positive temperature to mediate flow at a fin
rate under applied stress. Similarly, Johari@10# also pointed
out on the experimental basis that the configurational entr
smoothly goes to zero towardT50 K and thus there is no
paradox.

~c! The third type of approach is to consider the stabil
of the supercooled liquid against crystallization@see Fig.
1~c!#. This is the original approach of Kauzmann himself, b

FIG. 1. Three scenarios to resolve the Kauzmann paradox~a!
Ideal glass-transition scenario. In this case, a supercooled liqu
supposed to transform into an ideal glass state atT0, which is the
second-order phase transition. Accordingly, the structural relaxa
time diverges atT0. ~b! Smooth extrapolation scenario. In this sc
nario, the excess entropy smoothly goes to zero towardT50 K.
Thus, there is no divergence of the structural relaxation time atT0.
This is the singularity-free scenario.~c! Crystallization scenario. In
this scenario, a supercooled liquid becomes unstable against
tallization and thus it transforms into a crystalline state as a resu
the first-order phase transition~crystallization! before the excess
entropy becomes zero.
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there have been few further efforts along this direction a
its validity was questioned as explained above.

The difficulty of this problem arises from the fact that th
Kauzmann temperature exists in an experimentally inacc
sible temperature range. This is the primary reason why th
is no consensus on this issue of how the configurational
tropy decreases to zero upon cooling.

In this paper, we reconsider the Kauzmann paradox fr
the above standpoint~c!, focusing on the stability of a super
cooled liquid against crystallization. In other words, we r
consider how deeply we can supercool a liquid while equ
brating it. Thus, we will not touch the above-mentioned iss
of whether an ideal glass transition exists or not. On the b
of the recent findings@20–22# of the decoupling of a trans
lational diffusion mode from a structural relaxation one a
the resulting change in the crystallization kinetics, we arg
that it is intrinsically impossible to cool an ‘‘equilibrium’
liquid until TK without crystallization. Thus, we show tha
the Kauzmann paradox, or the entropy crisis, can be avo
by crystallization. We also suggest that there is a possib
of experimentally accessing the instability point of a sup
cooled liquid against crystallization and directly checking t
validity of our scenario.

II. BRIEF REVIEW OF THE CLASSICAL THEORY
OF NUCLEATION

First we briefly review the classical theory of nucleatio
@1,13#. Although it is not a first-principle theory, it is wel
established that it describes the nucleation and growth

is

n

ys-
of

FIG. 2. Schematic figure representing the temperature de
dence of the characteristic times (ta , tD , and tx) of a glass-
forming liquid. Structural relaxation timeta obeys the Vogel-
Fulcher equation@see Eq.~3!# and diverges while approachingT0.
Translational diffusion modetD is, on the other hand, decouple
from structural relaxation modeta at TB upon cooling. Below melt-
ing pointTm , a liquid tends to crystallize and thus the characteris
time of nucleation and crystallizationtx becomes finite belowTm .
Reflecting the decoupling oftD from ta at TB , tx also changes its
temperature dependence atTB . Since the relevant transport proce
of crystallization is not the structural relaxation mode, but the tra
lational diffusion one, the truetx (tD branch! is considerably
shorter thantx estimated with the assumption thatt t5ta (ta

branch!.
5-2
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cess of crystal on a satisfactory level~see, e.g., Fig. 3!. Thus,
we consider the stability of a supercooled liquid against cr
tallization on the basis of this classical theory. The freque
of homogeneous nucleation~i.e., nucleation that occurs in
liquid without assistance of impurity particles! was consid-
ered as a key physical factor characterizing the stability o
supercooled state. Nucleation frequencyI is given by

I 5
kn

t t
exp@2DFc/kBT#, ~1!

wherekn is a constant specified by the model. HereDFc,
which is the free-energy barrier for nucleation of a critic
nucleus, is a key thermodynamic factor governingI. Accord-
ing to the standard theory of the first-order phase transit
the size of a critical nucleus is estimated asr c52g/dm,
wheredm is the free-energy difference per unit volume b
tween a supercooled liquid and a crystal andg is the inter-
face tension between them. Note thatdm is usually an in-
creasing function of the degree of supercoolin
Approximately,dm>DH f(12T/Tm) nearTm , whereDH f
is the enthalpy of fusion. Then, the free-energy barrier for
nucleation is given by

DFc5
16pg3

3dm2
. ~2!

FIG. 3. Temperature dependences ofta , tD , andtx for a me-
tallic glass former@20# Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Open circle,
ta ; filled circle, tx ; and open square,tD . All the data are taken
from Ref. @20#. The solid line is the Vogel-Fulcher law, the do
dashed line is the Arrhenius law, and the dashed line is the pre
tion of Eq. ~5!. For this material, it is experimentally found thattD

obeys the Arrhenius law.f (f,T) can be estimated to be 107– 108

around the nose temperatureTn . At T5600 K, which is slightly
below Tg , tx (t t5tD) is comparable tota . Thus,tx should be-
come smaller thanta below temperatureTLML , which is located
around 600 K for this material. Thus, it is impossible to superc
this liquid further belowTLML while allowing the full structural
relaxation. Note that the characteristic relaxation time atTLML is in
the order of 104 s, which may be accessible experimentally. The k
temperatures of this material are as follows:Tm51026 K, Tn

5895 K, TB5850 K, Tg5623 K, andT05413 K. Fragility index
D f is 18.5.
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On the other hand, a kinetic factor governingI is t t , which
is the characteristic time of material transport controlli
crystallization.t t is usually believed to be structural relax
ation time ta , which is proportional to viscosityh and
obeys the Vogel-Fulcher law for a supercooled state at
temperatures~see Fig. 2 and Sec. III for its theoretical basis!:

ta5t0 expS D fT0

T2T0
D , ~3!

wheret0 andD f are constants andT0 is the so-called Vogel-
Fulcher temperature. SinceT0 is located very nearTK , at
least for fragile glass formers, it is usually assumed thatT0
5TK , following the Adam-Gibbs picture@15,23,24#. D f is
known as the fragility index, which is negatively correlate
with the fragility. Namely, the viscosity of a more fragil
liquid with smallerD f increases more steeply with decrea
ing temperature@1–4#.

After nucleation, a nucleated crystal grows. This grow
velocity is given by

V5
kv

t t
@12exp~2vmdm/kBT!#, ~4!

wherekv is a constant andvm is volume per atom or mol-
ecule. Thus, the characteristic time required for crystalli
tion of a certain small volume fractionf of a supercooled
liquid, tx , is given belowTm by

tx5S 3f

pIV3D 1/4

5t tS 3f

pknkv

expFDFc

kBT G
F12expS 2

vmdm

kBT D G3D 1/4

5t t f ~f,T!. ~5!

This tx has a minimum at the so-called nose temperatureTn
which is located slightly belowTm , as a result of the com
petition between an increasing driving force for crystalliz
tion dm and a decreasing mobility (1/t t) upon supercooling
~see Fig. 2!. This fastest rate of crystallization atTn deter-
mines the critical cooling rateRc , or the glass formability.
Then, the conditions to vitrify are rather straightforward
obtained@13#: ~i! larger DFc and ~ii ! larger h in a super-
cooled region. It is usually believed that if we can succe
fully pass through the most dangerous temperature reg
around Tn without crystallization upon cooling, a supe
cooled state at a lower temperature may be stable, or
from crystallization. This last conclusion is a direct cons
quence of the assumption oft t5ta , whose validity will be
reconsidered carefully below.

III. THEORETICAL BASIS OF THE
VOGEL-FULCHER LAW

Slow dynamics of supercooled liquid and the relevance
the Vogel-Fulcher law are worth considering in more deta
since our argument relies on its~at least apparently! diverg-
ing character atT0. There are various models describing t
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slow dynamics associated with glass transition. There
been no consensus on this issue, which is directly relate
the problem of whether an ideal glass transition exists or
For example, the theories based on a spin-glass picture
dict the Vogel-Fulcher-type divergence@16–19#, the
frustration-limited domain theory proposes the power lawT
dependence of the activation energy@25#, and some theories
predict nondivergent behavior at a finite temperature@26#. It
is beyond the scope of this paper to discuss the origin of
slow dynamics itself in detail@27,28#. Here we note that the
coincidence of T0 and TK for fragile glass formers
@1,2,23,29# and the numerical simulations suggestive of t
close connection between thermodynamic and kinetic sin
larity @30# are more consistent with the Vogel-Fulcher la
than the other predicted behaviors. Although the singula
at T0 must be considered more carefully@4#, the Vogel-
Fulcher law is a reasonable approximation. This scenari
supported by the notion that the universal behavior of sup
cooled liquids arises from an underlying random first-ord
transition@16–19#, which is found in mean-field theories o
spin glass without reflection symmetry, and in mod
coupling and density functional approaches to the struct
glass transitions@17,19#.

A theoretical argument based on random first-order tr
sition, which supports the validity of the Vogel-Fulcher la
is as follows@16,19#. Below TA the system has to overcom
some free-energy barrier to reach another metastable s
The driving force for this process to occur is the configu
tional entropy of the other states to which the region mi
hop. Thus, the mosaic structure made of metastable isla
emerges belowTA , which results in dynamic heterogeneit
Dynamic coherence lengthj, which is the characteristic siz
of metastable islands, diverges toward the spin-glass-
transition temperatureT0 asj>a@(T2T0)/T0#22/3 (a being
molecular size! and the free-energy barrier diverges asDF
5kBT@D fT0 /(T2T0)#. Thus, the Vogel-Fulcher law can b
derived on the basis of a microscopic theory~see Refs.
@16,19# for the details!.

As discussed by Stillinger@8#, the configurational entropy
would not vanish in any realistic model with finite-rang
forces. This is because point defects are always present
they lead to a finite contribution to the configurational e
tropy. However, even if rounding of the transition were
occur below the laboratory glass transition, the above a
ment should be relevant to the supercooled state excep
the very vicinity ofT0 @16#. Thus, we use the Vogel-Fulche
law for ta in our discussion.

Here we note that whether we can extrapolate the Vo
Fulcher law into and beyondTg is a matter of debate@26#.
However, we believe that if we fit the Arrhenius law tota
above Tm and fit the Vogel-Fulcher law only belowTm ,
there should be little deviation from the Vogel-Fulcher la
near and belowTg @28#. The validity of the Vogel-Fulcher
law even belowTg can indeed be seen in Fig. 3, at least
a metallic glass former studied here. More importantly, w
we consider here is a hypothetical ‘‘equilibrium liquid’’ be
fore vitrification. Thus, we believe that we can use the Vog
Fulcher law in our argument even belowTg determined for a
rather fast cooling rate.
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Finally, we note that the above theory@19# also predicts
that the distribution of the free-energy barrier heightDF,
induced by the fluctuation in the configurational entrop
gives rise to the heterogeneity in relaxation timeta . Accord-
ingly, relaxation in supercooled liquids is expressed by
stretched exponential as@1,2#

f~ t !5exp@2~ t/ta!bK#, ~6!

wherebK is the stretched exponent (0,bK<1). Note that a
smallerbK means wider distribution of the relaxation tim
As will be discussed in the following section, this distrib
tion of ta is the origin of the translational-rotational deco
pling, or the violation of the Stokes-Einstein relation. W
note that the degree of dynamic heterogeneity, which is c
acterized bybK , is controlled by the fragility. More fragile
liquids with smallerD f have stronger dynamic heterogene
~smallerbK) @1,2,19,31#.

IV. TRANSLATIONAL-ROTATIONAL DECOUPLING
AND CRYSTALLIZATION KINETICS

Magill and Plazek@32# found in their pioneering work
that the material transport of crystallization in a deeply s
percooled liquid is not controlled by viscosity and the crys
growth rate decouples from viscosity belowTm . Very re-
cently, it has been suggested@20–22# that for a deeply su-
percooled liquid the crystallization is not controlled by th
structural relaxation mode, but is controlled by the trans
tional diffusion mode~see Fig. 2!, which naturally explains
the above finding of Magill and Plazek. For metallic gla
formers, Masuhret al. @20# found that the translational dif
fusion decouples from the structural relaxation~or viscosity!
below bifurcation temperatureTB @33# and translational dif-
fusion constantDT follows the Arrhenius law there~see Fig.
3!. They also confirmed that the crystallization kinetics
controlled by the translational diffusion and not by the v
cosity. For molecular liquids, on the other hand, Swall
et al. @22# demonstrated by the study of deeply supercoo
tris-naphthylbenzene nearTg that translational diffusion con
stantDT is proportional toh20.77 ~fractional Stokes-Einstein
relation! and enhancement of translational diffusion relati
to viscosity or rotation by a factor of 400 atTg . This decou-
pling behavior is quite consistent with that derived from t
crystallization growth rate data of the same material@21,32#.
These studies indicate that by decreasing the crystalliza
temperature, the crystallization kinetics changes fr
viscosity-dominated to diffusion-dominated one atTB , re-
flecting the translational-rotational decoupling@20–22#.

Thus, we can say that it is translational diffusion that co
trols the rate of material transport for crystallization at a
temperature. The crucial point is that the translational dif
sion mode is decoupled from the structural relaxation o
below TB @33# ~see Fig. 2!, violating the Stokes-Einstein re
lation @1–4,34,35#. Although there is no firm microscopic
basis why the Stokes-Einstein-like relation should hold
molecular diffusion, it is well established experimentally th
it holds for a ‘‘true’’ equilibrium liquid aboveTm over a wide
temperature range. This decoupling is ascribed to the e
5-4
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tence of dynamic heterogeneity@34,35#: A deeply super-
cooled liquid is not a usual liquid any more but is a dynam
cally heterogeneous liquid@16,19,31#. The most intuitive
explanation for the rotational-translational decoupling ba
on the dynamic heterogeneity is as follows. The characte
tic time scale of rotational motion is governed by the slow
contributions of the distribution of relaxation times,Dr
}^ta&21 (Dr being rotational diffusion constant!, while the
average translational time is governed by faster times,Dt

}^ta
21& (Dt being translational diffusion constan!

@19,25,34,35#. For a liquid with a very narrow distribution o
the relaxation time, which is characterized bybK>1, it is
obvious that̂ ta&21>^ta

21& and thusDr}Dt . For this case,
the Stokes-Einstein relation holds. This is the case for a
uid aboveTm . Below Tm @28# ~or TA @16–19#!, the relax-
ation time distribution becomes wider with decreasingT, or
bK starts to decrease from 1. This tendency is stronger
more fragile liquids~note that more fragile liquids hav
stronger cooperativity, or stronger dynamic heterogene!.
Thus, the degree of the decoupling is larger for more frag
liquids. For such a case,tx can be significantly shorter tha
that estimated on the basis of relationt t5ta ~see Fig. 2!.

V. A POSSIBLE RESOLUTION OF THE KAUZMANN
PARADOX

A. Our scenario

Now we are ready to provide a resolution to the Kau
mann paradox. The very assumption made upon conside
the entropy crisis is that a supercooled liquid continues to
an ‘‘equilibrium’’ liquid, at least untilT0, once it is deeply
supercooled below the dangerous temperature region ar
Tn . The validity of this assumption itself must be check
carefully. The key physical parameter determining whet
we can supercool a liquid while allowing its structural rela
ation is the ratio oftx /ta which can be quantitatively ex
pressed as

tx

ta
5

t t

ta
f ~f,T!. ~7!

If we assumet t5ta , we obtain tx /ta5 f (f,T). Here,
f (f,T) is the slowness factor associated with nucleation
crystallization@see Eq.~5!#. Since it is known to be large fo
‘‘good’’ glass formers~see the caption of Fig. 3!, tx /ta can
also be large. However, since the material transport for c
tallization is controlled by the translational diffusion of a
individual atom or a molecule (t t) and not by the structura
relaxation (ta), the correct relation to be used ist t5tD ,
and ‘‘not’’ t t5ta . Reflecting the decoupling of thetD mode
from the ta one belowTB , thus,t t below TB is described
by either~i! the Arrhenius-type temperature dependence@20#
or ~ii ! the fractional Stokes-Einstein relation@34,35#. For
rather strong metallic glass formers, it is well established t
the diffusion process is well described by the Arrhenius l
@36,37#. For fragile molecular glass formers, on the oth
hand, it is often described by the fractional Stokes-Einst
relation @34,35#. Namely,t t changes the temperature depe
dence around TB from Eq. ~3! to either ~i! t t
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>t0 exp(DE/kBT), whereDE is the activation energy and of
ten similar to that of the viscosity aboveTm or ~ii ! t t5ta

n

(n,1). The situation for case~i! is schematically shown in
Fig. 2. BelowTB , thus, we should use

tx

ta
>expS DE

kBT
2

D fT0

T2T0
D f ~f,T! ~8!

or

tx

ta
5ta

n21f ~f,T!. ~9!

Note that both exp@(DE/kBT)2(DfT0 /T2T0)# and ta
12n be-

come zero~or at least very small! at T0, while f (f,T) is
rather insensitive toT except near these temperatures a
almost constant aroundT0, although it diverges at eitherT
5Tm or T50 K @38#. Thus, either of the above relation
leads to the conclusion thattx /ta should become quite sma
~less than 1! for deep supercooling before reachingT0. We
call temperatureTLML , where tx becomes equal tota ,
‘‘lower metastable limit,’’ following Kauzmann@7#. Note
thatTLML should always be located aboveT0. We stress that
it is not meaningful to consider an ‘‘equilibrium’’ liquid be
low TLML since a liquid should crystallize belowTLML dur-
ing the equilibration~or structural relaxation! time, which
must be longer thanta by definition. The distance betwee
TLML and T0 may be smaller for stronger liquids due to
weaker decoupling. However, even for strong liquids, su
as SiO2 and GeO2, the temperature dependence ofta or h
changes from the Arrhenius to the Vogel-Fulcher-type bel
Tm @39#. This implies the existence of the cooperativity a
the resulting dynamic heterogeneity, even though they
weak. For example,T0’s of SiO2 and GeO2 are estimated as
529 and 199 K, respectively@39#. Provided that a
translational-rotational decoupling also occurs in these
uids, our argument should also apply to these strong liqu
althoughTLML may be located rather nearT0. It is worth
stressing that no matter how closeTLML is to T0, the fact that
TLML.T0 is crucial for the avoidance of the Kauzman
paradox. Finally, for a hypothetical ‘‘strong-limit’’ liquid,
whoseta obeys the Arrhenius law, itsT0 is located at 0 K by
definition. Thus, there is no violation of the third law o
thermodynamics. In any case, the unphysical situation of
Kauzmann paradox can naturally be avoided by our scen
@see Fig. 1~c!#.

B. Experimental supports

In Fig. 3, we show the behavior ofta , tD , andtx for a
metallic glass former@20# to provide the readers with a quan
titative support about what is described above. It clea
shows thattx can indeed become less thanta with decreas-
ing T. We stress that the temperature extrapolation oftx ,
which is necessary to draw this conclusion, is only about
K. More importantly, there is no need of extrapolation f
ta , which means that we need not worry about wheth
there is an ideal glass transition or whetherta really goes to
infinity. It can be easily confirmed in Fig. 3 that up to 590
5-5
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the Vogel-Fulcher relation describes the experimental dat
ta well. TLML is located around 600 K, which is onl
220 K belowTg and the structural relaxation time is 104 s
there. Thus, it may be possible to experimentally appro
TLML while equilibrating the liquid and checking whether th
liquid really loses its stability against crystallization ther
We note thatTLML (;600 K) is located far aboveT0

(;413 K). The rather close distance betweenTg andTLML

and the not so long relaxation time (;104 s) at TLML sug-
gests a possibility that the relevance of our scenario res
ing the Kauzmann paradox may be checked experimen
for such a system.

We expect that the same conclusion should also
reached for molecular liquids~see, e.g., Ref.@21#!. Unfortu-
nately, however, there are few molecular liquids for whichtx

~crystal growth rateG and nucleation rateI ) and t t under
deep supercooling are available. Thus, extensive chec
our scenario for various glass-forming liquids remains a
ture task.

C. Consideration on the non-mean-field effects of crystallization

Here we consider whether the mean-field treatment
crystallization affects our main conclusion. The dynamic h
erogeneity and the resulting translational-rotational dec
pling are induced by the non-mean-field effects due to fl
tuations of configurational entropy. Fluctuation effects
kinetics are effectively included by usingt t5tD instead of
t t5ta . Inclusion of such non-mean-field effects would al
affect the evaluation off (f,T). For example, there is a pos
sibility that the critical size of a nucleusr c may become
smaller than dynamic coherence lengthj nearT0 since the
former decreases with an increase in the degree of super
ing while the latter increases. However, the nondiverg
character off (f,T) at T0 should not be changed by thes
effects since we do not expect any singularity ofDFc and
dm at T0. Thus, we believe that our conclusion would not
affected by the non-mean-field effects, at least on a qua
tive level. More explicitly, the effects may change the loc
tion of TLML , but should not affect our basic conclusion th
TLML should be located aboveT0. In relation to this issue, it
is worth noting that the crystallization behavior in deep
supercooled liquids is quite well described by the express
for tx @see Eq.~5! and Fig. 3#, whose validity has been
experimentally confirmed for metallic glass formers@20# and
also for molecular liquids@21#.

VI. STABILITY OF A GLASSY STATE:
CRYSTALLIZATION BELOW Tg

Finally, we discuss the stability of a metastable liqu
state against crystallization at low temperatures. Since
decoupling ofta and tD modes is the origin of crystalliza
tion at low temperatures in our model, we suggest that a v
fragile liquid may crystallize even belowTg . Such crystalli-
zation belowTg is indeed reported by Oguni and his c
workers@40# for several fragile liquids. Although crystalliza
tion belowTg was ascribed to the slow-b ~Johari-Goldstein!
relaxation mode in Ref.@40#, we suggest that it can be in
01150
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duced by the translational diffusion mode. Note that t
slow-b mode, which is usually assigned to be the rotatio
librational motion @2#, should not exist in metallic glas
formers made of spherical atoms and thus it cannot exp
the change in their crystallization kinetics belowTB ~see Ref.
@20#!. Since both modes start to decouple from the structu
relaxation mode aroundTB upon cooling, our assignment ca
also explain the interesting observation of Oguni and
co-workers on crystallization belowTg @40#.

Next we consider the case of a strong liquid. Differe
from a fragile liquid, we expect that a strong liquid should
more difficult to crystallize than a fragile one belowTg since
its kinetics is almost controlled byta due to the very weak
decoupling, which meanst t5tD>ta , and thus tx /ta
should be large. In other words, astronger liquid, which
suffers fromstronger disorder effects@28#, is more homoge-
neous dynamically. This is indeed the case for silica: Silic
glass continues to be amorphous even after thousand
years. This prediction that a stronger glass former should
more stable against crystallization has an important impli
tion on the storage of glassy material belowTg . It is of
practical significance to keep glassy functional materia
such as photo-printing films, in the glassy state without cr
tallization during the storage period. We argue that the red
tion of fragility should enhance the stability of glassy ma
rial against crystallization belowTg . This prediction may be
useful for improving the long-term stability of glassy mat
rial during the storage.

In relation to this problem, we point out that crystal fo
mation in a glassy material should induce extensional st
~negative pressure! around a nucleated crystal due to the vo
ume contraction upon crystallization, which should provi
the free volume to the particles surrounding the crystal,
crease their mobility, and help further crystallization. Th
feature should become quite important especially belowTg ,
wheretx becomes comparable tota . The effects of negative
pressure may not exist for a supercooled liquid state and
be unique to a glassy state. We speculate that this scen
may explain a sudden increase in the growth speed be
Tg , observed by Hikima, Hanaya, and Oguni@40#, which is
apparently counterintuitive and cannot be expected from
conventional theory of crystallization. This problem will b
considered in more detail elsewhere.

VII. SUMMARY

In summary, we propose that a supercooled liquid sho
crystallize before reachingT0 if it is cooled slowly enough to
satisfy the condition that the equilibration time is longer th
structural relaxation timeta . This indicates that there exist
a lower metastable limitTLML , below which an ‘‘equilib-
rium’’ supercooled liquid cannot exist. Thus, the Kauzma
paradox is naturally resolved. This conclusion may app
ently look the same as that derived by Kauzmann hims
more than 50 years ago@7#. However, we stress that th
physics behind them is entirely different: The decoupling
the translational diffusion mode from the structural rela
ation one, which was not known at the time of Kauzmann
a key to deriving our conclusion. We suggest that it isdy-
5-6
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namic heterogeneitythat destabilizes an ‘‘equilibrium’’ su-
percooled liquid state as well as a glassy state against c
tallization at low temperatures.

It should also be noted that our resolution removes
physical foundation for the necessity of an ideal glass tr
sition atT0. At the same time, however, our resolution do
not necessarily exclude the existence of such a hidden
namic singularity associated withT0. Note that theoretica
extrapolation is always possible. Our study indicates that
is a separate problem and we cannot use the Kauzmann
,
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dox to justify the existence of an ideal glass transition. F
ther study is necessary to elucidate this problem, which
deeply connected with the physical nature of liquid-gla
transition and conceptually important@8–10,14,41#.
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